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SUMMARY

A spectral methodology is proposed to examine the in�uence of shear thinning on the transient free-
surface �ow inside a three-dimensional thin cavity. The problem is closely related to the �lling stage
during the injection molding process. The moving domain is mapped onto a rectangular domain at
each time step of the computation. A modi�ed pressure is introduced that is governed by the Laplace’s
equation. The �ow �eld is expanded in Fourier series along the lateral direction in the mapped domain,
and the Galerkin projection is used to derive the equations that govern the expansion coe�cients, which
are solved using a variable-step �nite-di�erence scheme. This approach is valid for simple and complex
cavities as illustrated for the cases of a �at plate with variable and constant thickness. It is shown that,
even for highly non-linear shear-thinning �ow, only a few modes are needed for convergence. Shear
thinning generally in�uences the �ow behaviour. However, shear thinning may enhance or prohibit
the �ow, depending whether the �ow rate at the entrance of the cavity is fast or slow, respectively.
Copyright ? 2004 John Wiley & Sons, Ltd.

1. INTRODUCTION

Transient free-surface �ows belong to the important class of moving-boundary problems,
which remain challenging because of the non-linearities involved. This is particularly true for
non-Newtonian �ow. Even for Newtonian �ow, the prescription of contact conditions between
moving boundary and solid wall, the implementation of kinematic and dynamic conditions at
the moving boundary, the estimation of curvature in the presence of surface tension, and the
discretization of a moving domain, are just some of the many di�cult issues encountered in
the simulation of free surface and multiphase �ows. These di�culties are considerably am-
pli�ed for three-dimensional problems. Typically, a boundary-value problem of the moving
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type involves geometric and material non-linearities that must be addressed as well as an
unknown boundary, a free surface or an interface. In contrast to conventional problems in
�uid dynamics, the domain of computation, which is bounded in part by the free surface, is
not known a priori since the shape of the free surface itself must be determined as part of the
solution. For steady-state �ow, such as the �ow at the exit of a die, a number of iterations
are usually needed in order to reach the precise form of the free surface. In this case, do-
main discretization is not a major di�culty [1]. The problem becomes even more challenging
when, in addition, the shape of the free surface evolves with time, generating large distor-
tions in the discretized domain of the �uid. While large distortions have been reasonably well
handled for two-dimensional free-surface �ows, major issues remain open regarding complex
three-dimensional problems.
Several numerical techniques have been developed for the solution of moving boundary=

initial value problems. These techniques may be classi�ed as Eulerian, Lagrangian and mixed
Eulerian–Lagrangian [2, 3]. In the Eulerian description of the �ow, the grid points remain
stationary or move in a predetermined manner [4–7]. Typically, the �uid moves in and out
of the computational cells. The method can handle arbitrarily large free-surface deformations
without loss of accuracy. Its main disadvantage, however, is the lack of sharp de�nition of
the free surface, and the consequent di�culty to impose the kinematic and dynamic boundary
conditions on the free surface. In the Lagrangian approach, the grid points move with local
�uid particles [8, 9]. The free surface is sharply de�ned and it is easy to impose the necessary
boundary conditions. However, Lagrangian methods require mesh re�nement or remeshing
for large deformation of the free surface. Hybrid methods have also been developed that
combine the advantages of the Eulerian and Lagrangian methods [10]. Most methods dealing
with the simulation of the �lling of injection molding are based on the Hele–Shaw or thin-
shell assumption, which ignores the variation of the �ow in the thickness direction [11–14].
These studies have been essentially based on the �nite-element method (FEM), and therefore
are limited because of the frequent remeshing requirement under transient and non-linear
conditions.
Khayat and co-workers extended the shallow-water or lubrication formulation to cover non-

linear problems such as high-speed lubrication problems, and thin-�lm coating �ow of New-
tonian at high inertia [15–17] and non-Newtonian �ows [18, 19]. The lubrication formulation
reduces the problem by one dimension as a result of the dominant horizontal scale(s) over
the depthwise direction, z. In other words, given the large horizontal length scales relative to
the depth, the variation of the velocity across the �lm becomes negligible, particularly in the
di�usive terms, where shear e�ects are assumed to dominate elongation e�ects. Consequently,
the pressure reduces to its hydrostatic part; it varies only with gravity in the vertical direc-
tion. Various models can be incorporated, to cover both laminar and turbulent �ows, for any
geometry. Two di�erent approaches are usually adopted in the literature, the most common of
which is based on the long-wave approximation, which neglects the depthwise �ow compo-
nent entirely, and the other method accounts for the vertical �ow similarly to boundary-layer
theory. A major problem is encountered, however, by both methods, since the dependence
of the �ow on the depth must be explicitly given in order to reduce the problem. If, on the
one hand, �uid inertia is neglected, as in slow lubrication problems, the approximation of
the velocity does not pose any problem since the x and y momentum equations are readily
integrable in the z direction. If, on the other hand, inertia is present, then the z dependence
of the velocity must be approximated in order to integrate the convective terms in the mo-
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mentum equations. Various approximations have been used in the literature, but, predomi-
nantly, a semi-parabolic pro�le in z is used for laminar �ow, and a �at (plug-�ow) pro�le
is used for turbulent �ow. These approximations, however, are not valid under conditions of
strong non-linearities, such as high inertia, or strong shear and elongation �ows. Khayat and
co-workers proposed an e�ective spectral representation of the velocity pro�le in terms of
z was implemented, coupled with a Galerkin projection technique, which provided excellent
agreement with the Watson’s similarity solution in the limit of steady two-dimensional liquid
spreading [15].
These recent studies by Khayat and co-workers were, however, limited to planar or axi-

symmetric �ows. Similar spectral methodologies will be used in the present work that lead
to a low-dimensional spectral description of the three-dimensional transient free-surface �ow
for a shear-thinning �uid. The problem is challenging since, on the one hand, conventional
domain methods are inadequate for adaptive meshing, and, on the other hand, integral meth-
ods such as the boundary-element method, which can handle more easily adaptive meshing,
are less e�ective for non-linear �ow. In the present paper, the di�culties with conventional
methods are circumvented by devising a hybrid Lagrangian=Eulerian method, which con-
sists of mapping the irregular moving domain, at each time step, onto a �xed rectangular
domain. In order to handle the highly non-linear e�ects in the averaged equation in the
horizontal plane, the spectral method is used. The �ow �eld is expanded in Fourier series
in the transverse direction, and the �nite-di�erence method is used to obtain the expansion
coe�cients. The method is used to obtain the three-dimensional �ow �eld inside a thin cav-
ity. This corresponds to the solution of a large class of free-surface �ow problems, with
close relevance to polymer processing. The �ow is typically encountered during the �lling
stage inside a thin cavity as in injection molding. The lubrication assumption is adopted
to derive the resultant equations for a shear-thinning �uid, averaged over the thickness of
the cavity.

2. GENERAL FORMULATION

In this section, the basic assumptions for the lubrication formulation are �rst brie�y reviewed
for viscous shear-thinning �uids. The theory is then extended to include the transient free-
surface �ow inside thin three-dimensional cavities.

2.1. General lubrication theory and �ow domain

Consider an incompressible inelastic non-Newtonian �uid of density �, and viscosity �. Surface
tension e�ect is assumed to be negligible. If (x1; x2; x3) denotes the three-dimensional system
of Cartesian co-ordinates, then the conservation equations for an incompressible �uid can be
concisely written as

uj; j=0; �(ui; T + ujui; j)=−P; i +��(ui;j+uj;i )�;j (1)

where i; j=1; 2; 3, ui are the velocity components, P is the hydrostatic pressure, and T is
the time. The summation convention is assumed, and a subscript after a coma denotes partial
di�erentiation. In this work, the �uid is assumed to obey the power law for
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Figure 1. Schematic illustrating the transient free-surface �ow inside a cavity induced
by the imposed �ow at the source boundary, �s.

viscosity [20]:

�(�̇)=m0 | �̇|n−1 (2)

where m0 is a material constant, n is the power-law exponent, and �̇ is the square root of the
second invariant of the rate-of-strain tensor.
The lubrication assumption is the hydrodynamic analogue of shell theory. In most lubrication

�lms the thickness of the �lm is small compared with the lateral dimensions, or with the
local radius of curvature. Properly handled, this assumption can be used to eliminate the
dependence upon one of the three spatial variables from the hydrodynamic equations and
boundary conditions. The continuity equation is integrated across the �lm and the conservation
equations are used to evaluate the quantities appearing as integrands. Consider the free-surface
�ow of a thin continuous �lm of incompressible �uid between two rigid surfaces as shown
schematically in Figure 1. For simplicity, the �ow is assumed to be symmetric with respect
to the (x1; x2) plane, so that x3 ∈ [−H (x1; x2);+H (x1; x2)], where 2H (x1; x2) is the thickness of
the plate.
In lubrication theory, the conservation equations (1) are formulated in the narrow-gap

limit [12]. It is convenient to cast these equations in terms of dimensionless variables. Typ-
ically, in three-dimensional thin-cavity �ow, there are three characteristic lengths, L1 and L2
along the lateral directions x1 and x2, and H0, representing the thickness of the cavity in the
x3 direction. Note that, typically, H0�L1; L2. Figure 1 shows a step of the �lling stage of a
thin cavity of general shape. If L1 and L2 are of the same order, L0, then the dimensionless
variables may be introduced as follows:

(x; y)=
1
L0
(x1; x2); z=

x3
H0
; t=

V0
L0
T; h=

H
H0

(ux; uy)=
1
V0
(u1; u2); uz=

u3
V0�

; p= �2
L0
�0V0

P; �=
�
�0

(3)

where V0 is a typical (reference) velocity, �0 =m0(V0=L0)1−n, and �=H0=L0 is the aspect
ratio.
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Upon carrying out the change of variables and excluding terms of O(�)2, the dimensionless
continuity and momentum conservation equations reduce to

u�; � + uz; z=0 (4)

�2 Re(u�;t +uju�; j)=−p;�+(�u�;z );z (5)

p;z =0 (6)

where a Greek Index corresponds to x and y, and a Latin Index corresponds to x, y and z.
The dimensionless viscosity is explicitly given by

�(r; t)= |u�;z u�;z |(n−1)=2 = |z|(n−1)=n|∇p(x; t)|(n−1)=n (7)

Here r(x; y; z) is the position vector of a point in space, and x(x; y) is its projection vector in
the (x; y) plane. If the continuity equation is integrated between z=0 and z= h, and inertia
e�ect is neglected in the momentum equation, then the following equation for the pressure is
obtained [12, 21]:

(h(x)(2n+1)=n|∇p(x; t)|(1−n)=np;� (x; t));� =0 (8)

Dependence on time of the pressure in the equation above is of course implicit since the �ow
is assumed to be quasi-steady as a result of neglecting inertia.

2.2. Boundary and initial conditions

Regarding the boundary conditions, the lubrication formulation does not accommodate adher-
ence conditions at the lateral walls, at x2 = 0 and x2 =L2 (for straight lateral walls). Stick
boundary conditions can only be applied at the bottom and upper surfaces, x3 =+H and
x3 =−H , respectively (see Figure 1). This assumption is not as unrealistic as it seems, since
the �ow core in a thin cavity is not signi�cantly a�ected by the boundary-layer region at the
lateral walls. In this case, only the no-penetration condition applies along the lateral walls.
The �ow is assumed to be driven by an imposed (dimensionless) pressure gradient, q0(y; z; t),
at x=0, so that the general boundary condition at the entrance to the cavity is given by

q(x=0; y; z; t)= q0(y; z; t) (9)

where q(r; t)= n(r; t) · ∇p(r; t) is the directional derivative of the pressure along the normal
direction, and n is the normal vector. The pressure gradient may be either maintained �xed
at all time, or adjusted according to the �ow conditions inside the cavity (mold). A time-
dependent pressure gradient corresponds typically to the inlet condition in injection molding
where the pressure rather than the �ow rate is varied with time at the source of �uid. Although
a variable pressure gradient at the entrance to the cavity can be easily accommodated by the
present formulation, q0 will be assumed to depend only on y. Since the lubrication assumption
can only accommodate the no-penetration conditions

n(r; t) · ∇p(r; t)=0 (10)

is assumed to hold at the lateral walls.
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At the front (free surface) the imposition of a suitable dynamic condition is not obvious
for thin-cavity �ow. It is clear that for the general three-dimensional �ow, and in the absence
of surface tension e�ect, a zero-traction condition must apply at the front. If the front is
represented by x=X (y; z; t) for z ∈ [−h; h], and t¿0, and n(y; z; t) is the unit normal vector
to the front, then it can be shown that, to leading order, the dynamic condition at x=X (y; z; t)
becomes [21]

p(x=X; y; z; t)=0 (11)

Finally, the kinematic condition at the free surface is the least obvious among the boundary
conditions to implement. In a Lagrangian representation, the moving boundary is assumed
to deform with the �uid velocity, such that the evolution of free surface is governed by the
equation

dr
dt
= u(r; t) (12)

where r and u is the position and velocity vectors at the front. Although easy to implement,
the resulting scheme based on Equation (12) tends to sweep points on the moving bound-
ary along the tangent to the moving boundary, even if only small shape changes take place.
Consequently, frequent redistribution of the moving boundary points or remeshing would be
necessary if relation (12) is used. Alternatively, the moving boundary can be assumed to
deform pointwise along the normal with the normal projection of the �uid velocity at the
moving boundary [2]. This method keeps the points evenly distributed on the moving bound-
ary. The alternative kinematic boundary condition is obtained by taking the scalar product of
Equation (12) with the vector n, and noting that n · n=1, one has n · (dr=dt)= n · n(n · u). An
equivalent solution of this equation leads to an alternative kinematic condition [2]. In this case,
the free surface deforms only in the normal direction. Although this condition requires the
calculation of the normal vector at the free surface, no remeshing of the free-surface points is
needed in this case since the points remain evenly distributed on the free surface. Moreover,
the condition is particularly advantageous to use in the present context. This advantage will
become evident when the solution of the pressure equation is carried out in the (x; y) plane.
However, Equation (12) can be more advantageous because of simplicity of implementation.
In the current study, the di�culty with node sweeping will be easily circumvented once an
Eulerian form of (12) is adopted (see below).
As to the initial conditions, the �uid is assumed to be initially at rest, occupying a �nite

non-zero domain, which will be speci�ed later.

3. SOLUTION PROCEDURE

The solution of Equation (8) is now obtained subject to the appropriate boundary conditions on
the cavity wall and free surface. The �ow domain in the horizontal plane is �rst mapped onto
a rectangular domain. The solution of the mapped equation is obtained by using the method
of Galerkin projection. This method consists of expanding the pressure in Fourier series. The
expansion coe�cients are then determined by solving the projected equations. However, the
problem is considerably simpli�ed after Equation (8) is reduced to an equivalent Laplace’s
equation.
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3.1. Domain of computation and reduced problem

The domain of computation is obviously the projection �xy(t) of the physical domain �(t)
onto the (x; y) plane. Equation (8) has an equivalent Laplace’s equation if the following
quantity, S(x; t), is introduced such that

S;� (x; t)= h(x)(2n+1)=n|∇p(x; t)|(1−n)=np;� (x; t) (13)

In this case, S must satisfy the Laplace’s equation

S;xx (x; t) + S;yy (x; t)=0 (14)

The corresponding boundary conditions for Equation (14) are obtained from conditions (9)–
(12). For simplicity, the cavity is assumed to be straight at the entrance, with x=0 and
y∈ [−1;+1], and the �ow is assumed to enter the cavity at a �ow rate that depends only on
y. Thus, at the entrance to the cavity, q0(y; t)=p;x (x=0; y; t), and condition (9) reduces to

S;x (x=0; y; t)=−h(2n+1)=n(x=0; y)|q0(y; t)|(1−n)=nq0(y; t) (15)

At the lateral walls, Equation (10) yields

n(x) · ∇S(x; t)=0 (16)

Finally, at the front, the dynamic condition (11) asserts that dp(x=X; y; t) along the free
surface (curve in the horizontal plane) or dp=p;x dx + p;y dy=0. Upon multiplying this
equation by h(2n+1)=n|∇p|(1−n)=n, one obtains that dS=0 along the front. One can then set

S(x=X; y; t)=0 (17)

Once S(x; t) is determined from Equation (14), at a given time, t, the velocity components
are then obtained, which are given by

u�(r; t) =
(

n
n+ 1

)
1
h(x)

[
1−

(
z
h(x)

)(n+1)=n]
S;� (x; t) (18a)

uz(r; t) =
(

n
n+ 1

)
h;� (x)
h2(x)

z

[
1−

(
z
h(x)

)(n+1)=n]
S;� (x; t) (18b)

Equation (12) is used to determine the evolution of the front in three-dimensional space,
which is rewritten here as

Ux(y; z; t)=X;t (y; z; t) +Uy(y; z; t)X;y (y; z; t) +Uz(y; z; t)X;z (y; z; t) (19)

where Ui(y; z; t)= ui(x=X; y; z; t), i= x; y; z, are the velocity components at the front.

3.2. Domain mapping

In order to represent the modi�ed pressure, S, in series of orthonormal functions, the domain
of computation must be rectangular. For this, the physical domain (x; y)∈�xy(t) is mapped
onto the domain (�; �)∈ [0; 1]× [−1; 1]. The mapping is schematically shown in Figure 2. More
speci�cally, consider the projection of the �ow, at a given time, in the (x; y) plane. If the width
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Figure 2. Mapping of the middle slice of the time-dependent physical domain in the (x; y) plane onto
the rectangular computational domain in the (�; �) plane.

at x=0 is taken as twice the reference length, L0, then �xy(t)= {(x; y)|x∈ [0; X ]; y∈ [−1; 1]}.
In this case, let the mapping be given by

�(x; y; t)= t; �(x; y; t)=
x

L(y; t)
; �(x; y; t)=y (20)

where L(y; t)=X (y; z=0; t). Upon use of expressions (20), Equation (14) for the modi�ed
pressure reads

[1 + (�L;� )2]S;��+[2�(L;� )2 − �LL;�� ]S;�−2LL;� S;��+L2S;� =0 (21)

subject to the following boundary conditions:

S;�(�=0; �; �)= a2|�2 − 1|(1−n)=n(�2 − 1) (22a)

where a is a positive quantity, re�ecting the strength of the incoming �ow

S(�=1; �; �) = 0 (22b)

S;�(�; �=−1; �) = 0 (22c)

S;�(�; �= + 1; �) = 0 (22d)

Note that S is coupled to the shape of the front, X (y; z; t), which must be determined as part
of the solution, thus making the problem non-linear. The shape of the front in turn delimits
the domain in the (x; y) plane. Once S(x; y; t) is obtained at a given time, the horizontal
velocity components at the front are evaluated. X (y; z; t) is then determined by solving the
kinematic equation (19), which, in the horizontal plane, reduces to

U (y; t)=L;t (y; t) + V (y; t)L;y (y; t) (23)

where U (y; t)=Ux(y; z=0; t), and V (y; t)=Uy(y; z=0; t).

3.3. Pressure expansion

Since the �ow is assumed to be symmetric with respect to the y-axis, the modi�ed pressure
can be expressed as

S(�; �; �)=
∞∑
n=0
Sn(�; �) cos n	� (24)
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Note that expression (24) satis�es the two lateral boundary condition (22c) and (22d).
Obviously, a truncation level will have to be imposed, leading to a �nite number of modes,
M , in the expansion. If expression (24) is substituted into Equation (21), and the Galerkin
projection method is used, then the following recursive relation is obtained for the pressure
coe�cients:

M∑
n=0
AmnSn; �� +

M∑
n=0
BmnSn;� +

M∑
n=0
CmnSn=0 (25)

where the time-dependent coe�cient matrices are given by

Amn(�; �) =
∫ +1

−1
cos(m	�) cos(n	�)[1 + (�L; �)2] d�

Bmn(�; �) =
∫ +1

−1
cos(m	�){[2�(L;�)2 − �XX;� �] cos(n	�) + 2n	LL;� sin(n	�)} d� (26)

Cmn(�; �) = n2	2
∫ +1

−1
L2 cos(n	�) cos(m	�) d�

In this case, the Galerkin projection consists of multiplying Equation (21) by cos(m	�) for
m∈ [1; M ], and integrating it with respect to � from −1 to 1, after substituting expression
(24). The resulting system (25) can be regarded as a set of ordinary di�erential equations
(since time � appears only implicitly) with 2M degrees of freedom.
Once system (25) is solved, S(x; t) is determined over the domain �xy(t), in particular along

the boundary �xy(t), the horizontal components of the velocity at the front are determined
from Equation (18a) by setting z=0, leading to

U (y; t) =
(

n
n+ 1

)
1
h(L)

S;x (L; y; t) (27a)

V (y; t) =
(

n
n+ 1

)
1
h(L)

S;y (L; y; t) (27b)

Similarly to the pressure expansion (24), L(y; t) is expanded as

L(y; t)=
M∑
n=0
Ln(t) cos n	y (28)

The Galerkin projection is used to solve Equation (23), and the coe�cients Ln(t) are governed
by following set of coupled ODEs:

dLn(t)
dt

=
M∑
n=0
Dmn(t)Ln(t) + Em(t) (29)

where the coe�cients are given by

Dmn(t) = n	
∫ +1

−1
cos(m	y) sin(n	y)V (y; t) dy

Em(t) =
∫ +1

−1
cos(m	y)U (y; t) dy

(30)
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Systems (25) and (29) are solved simultaneously as a set of algebraic-di�erential equations
involving 3M degrees of freedom. An explicit backward-�nite-di�erence scheme in time is
used to solve system (29), which then determines the front position within an error of less
than 1 per cent. System (25) is solved using a variable-step �nite-di�erence scheme in space.
The basic discretization is the trapezoidal rule over a non-uniform mesh. This mesh is chosen
adaptively, to make the local error approximately the same size everywhere. Higher-order
discretizations are obtained by di�ered corrections and global error estimates are produced
to control the computation. The linear system of equations is solved using a special form of
Gauss elimination that preserves sparseness. The tolerance is generally kept lower than 10−6.

4. NUMERICAL RESULTS

The formulation and solution procedure are now used to examine the transient free-surface
�ow inside thin cavities. The �ow �eld is �rst examined for a highly shear-thinning �uid
(n=0:2). The in�uence of the number of modes, M , is assessed for this highly non-linear
�ow. The in�uence of shear thinning on the cavity �ow is then examined in some detail. Fi-
nally, the in�uence of cavity thickness is investigated for both Newtonian and shear-thinning
�ows. All results are given in terms of dimensionless quantities. The initial domain occu-
pied by the �uid in the (x; y) plane is taken to correspond to �xy(t=0)= {(x; y)|x∈ [0; 12 +
1
2(y

2 − 1)2]; y∈ [−1; 1]}. The �ow rate is imposed by prescribing p;x at x=0. In this work,
p;x (x=0; y; t)= a(y − 1)(y + 1), where a is a constant to be speci�ed later.

4.1. Flow of a highly shear-thinning �uid and numerical assessment

Consider the �ow of a shear-thinning �uid inside a �at cavity of constant thickness. The
Power-law Index is n=0:2. The length and the width are taken along the x and y direc-
tions, respectively, with the x-axis lying half-way between the lateral sides of the cavity (see
Figure 2). In this problem, a=2. Although the �uid is �owing predominantly in the x direc-
tion, there is a strong secondary �ow in the y direction as well. Figure 3 shows the evolution
of the front in the (x; y) plane between the two lateral �at walls at y=± 1. The front is shown

Figure 3. In�uence of the number of modes on the transient �ow of a shear-thinning �uid (n=0:2; a=2)
inside a �at plate. The fronts are shown at equal time intervals over a period of 5 time units, for

M ∈ [2; 10]. The arrows in this and subsequent �gures indicate the direction with time.
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Figure 4. In�uence of the number of modes on the evolution of the front tip position, Xmax(t), and that
of contact, Xc(t), with time for the �ow inside a �at plate of Figure 3.

at equal intervals over a period of 5 time units. Note that the initial domain is shown partially
for clarity since it extends to x=0. The calculations are carried out for di�erent levels of
truncation, corresponding to M ∈ [2; 10]. The �gure clearly shows the fast rate of convergence,
despite the presence of strong non-linearities. This is con�rmed below.
The sequence of �ow fronts in Figure 3 shows a relatively dominant axial �ow at the

lateral walls (y=± 1), which leads to the straightening of the front with time. Indeed, the
�uid in the vicinity of the lateral boundaries tends to �ow faster than that at the front tip (due
to slippage), eventually straightening the front. The �gure indicates that the front becomes
essentially straight after some time, despite the parabolic driving pressure gradient at the
entrance x=0. It is interesting to observe that the maximum �ow at x=0 does not induce
a relatively strong maximum in the middle of the front. The spacing between two successive
fronts diminishes with time, which is of course expected since a time-independent pressure
gradient is imposed at the entrance, whose e�ect weakens as additional �ow enters the cavity.
A better quantitative assessment of convergence and accuracy is achieved by monitoring

the time evolution of the front tip, Xmax(t), and that the contact point, Xc(t). Figure 4 displays
the evolution of Xmax and Xc for the same truncation levels, M ∈ [2; 10]. The starting point,
at t=0, is Xmax(0)=1 and Xc(0)=0:5, corresponding to the initial �uid domain. Although
Xmax and Xc increase monotonically with time, the rate of increase drops continuously with
time. The in�uence of higher-order modes is insigni�cant in this case. In fact, the use of
only two modes leads to a reasonably accurate result. Convergence is clearly attained for
M¿2. The results for M¿2 are essentially the same, con�rming the observations based on
Figure 3. Table I shows the numerical values for Xc and Xmax at t=5, together with the
di�erence between two successive values. Convergence is shown to be oscillatory. Figure 4
and Table I indicate that the two-mode solution tends to slightly underestimate the value of Xc
in general, and slightly overestimate the Xmax value for t¡0:5. Additional calculations show
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Table I. In�uence of number of modes and convergence assessment for shear-thinning �uid (n=0:2,
a=2) inside a �at plate. The table shows the position values of the contact and tip points at t=5.

M Xc (t=5) � Xmax(t=5) �

2 4.37844 0.00000 4.50548 0.0000
4 4.40406 0.02056 4.50646 0.00098
6 4.40952 0.00546 4.50422 −0.00224
8 4.42531 0.0157 4.50773 0.00351
10 4.43325 0.00794 4.50713 −0.00060

Figure 5. Evolution of the distribution of the axial velocity component, U (y; t), at the front for 0¡t¡5,
for the �ow in Figure 3. The arrows in this and subsequent �gures indicate the direction in time.

that the rate of convergence is generally high for a �ow with a di�erent initial domain, or a
�ow in curved cavities. Although the results for M¿2 are slightly more accurate, the results
below are reported for M =2 for clarity. Recall that the current convergence assessment is
based on the highly non-linear �ow with n=0:2. The inclusion of higher-order modes leads
to increasing modulation (with M), which makes the evolution of the velocity components,
especially in phase space, di�cult to interpret. It is emphasized that the inclusion of a few
higher-order modes does not even increase noticeably the CPU time for the computation.
The strength of the lateral �ow is further appreciated by examining the horizontal velocity

components at the front. Figures 5 and 6 show the distributions of the axial and lateral velocity
components at the front, U (y; t) and V (y; t), respectively. The pro�les are shown over a period
of 5 time units, corresponding to the �ow in Figure 3. The arrow in the �gures indicates the
time direction. The discrepancy between the velocity of the front tip, U (0; t), and that of the
points of contact, U (± 1; t), is obvious from Figure 5, particularly in the initial stages. The
discrepancy decreases with time. It is interesting to observe from the �gure that, initially,
the minimum axial �ow occurs roughly half-way between the lateral wall and the middle
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Figure 6. Evolution of the distribution of the lateral velocity component, V (y; t),
at the front for 0¡t¡5, for the �ow in Figure 3.

(y=± 0:5). Eventually the minimum occurs at y=0. The �gure also shows that the velocity
tends to generally converge in the long time everywhere, including near the lateral walls. The
axial �ow decreases considerably, more than 4 times its initial value over 5 time units. The
lateral velocity component, V (y; t), is strongest initially, and is generally of the same order
of magnitude as U (y; t), as depicted from Figure 6. As expected, the lateral velocity vanishes
at y=± 1. However, there is a sharp drop in V (y; t) near the lateral boundaries. This drop
becomes weaker with time. It is also interesting to observe from Figure 6 that V (y; t) is
highly non-linear initially, and is essentially linear near the middle (y=0) as time increases.
The overall non-linear behaviour is further assessed in Figure 7, which shows the phase plot
in the (U;V ) plane. The phase plots are closed orbits that are similar to those emerging from
dynamical systems. They tend to decrease in the overall diameter, con�rming the weakening
of the �ow with time. The width of the orbit represents the di�erence between U (0; t) and
U (± 1; t).

4.2. In�uence of shear thinning on transient behaviour

The in�uence of shear thinning is now investigated on the front evolution and corresponding
�ow �eld. The level of shear thinning is of course imposed through the value of the power-
law exponent n. It will be seen shortly that n is not the only factor that in�uences the
departure from Newtonian behaviour. One expects shear thinning to relatively accelerate the
�ow, but this is not always the case. There is a strong interplay between the level of shear
thinning and the magnitude of the driving pressure. Shear-thinning level is varied over the
range n∈ [0:2; 1], where it is recalled that n=1 corresponds to a Newtonian �uid. Two levels
of driving pressures at x=0 will be considered, corresponding to a=1 and 2.
Consider �rst the case of a relatively high driving pressure (a=2). The resulting �ow

is represented in Figure 8, which shows the evolution of the free surface for n=1, 0.6
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Figure 7. Phase plot of the axial and lateral velocity components, U (y; t) and V (y; t), at
the front for 0¡t¡10, for the �ow in Figure 3.

Figure 8. In�uence of shear thinning on transient �ow inside a �at plate of constant thickness (a=2).
The fronts are shown at equal time intervals over a period of 5 time units, for n=0:2, 0.6 and 1.0.

and 0.2. It is observed that a shear-thinning �uid penetrates the cavity faster than a Newtonian.
What is even more interesting to observe from the �gure is the substantial drop in rate of
penetration as n decreases from 0.6 to 0.2. The increase in rate (as n decreases) is far from
being linear with n since the �ows at n=1 and 0.6 advance at essentially the same rate. The
non-linear in�uence of shear thinning is further quanti�ed by examining Xmax(t) and Xc(t),
which are depicted from Figures 9 and 10. Both �gures show that the �ow response (at least
in the middle and lateral walls) is essentially Newtonian for n¿0:5. It is important to observe,
in addition to the actual values of Xmax and Xc, the rate of increase of these two quantities,
which is much higher for a shear-thinning �uid (n¿0:5). This is also con�rmed by examining
the evolution of the horizontal velocity components at the front, which can be summarized by
the phase plot in the (U;V ) plane as shown in Figure 11. The �gure shows only two cases,
n=0:2 and 1.0, for clarity.
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Figure 9. In�uence of shear thinning on the evolution of the front tip position, Xmax(t), with time for
the �ow inside a �at plate of constant for n∈ [0:2; 1:0] (a=2).

Figure 10. In�uence of shear thinning on the evolution of the front contact point position, Xc(t), with
time for the �ow inside a �at plate of constant for n∈ [0:2; 1:0] (a=2).

As mentioned above, there is an important interplay between shear thinning and the �ow
rate. The results in Figures 8–11 indicate that shear thinning tends to enhance the �ow.
This is in fact what one would expect since viscous e�ects are e�ectively reduced in the
presence of shear thinning. However, in Hele–Shaw �ow, there is a slip at the wall, which
tends to enhance �uid movement and reduce the overall shear rate. For a constant thickness,
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Figure 11. Phase plot of the axial and lateral velocity components, U (y; t) and V (y; t), at the front for
0¡t¡5, for the �ow in Figure 8. The plots are shown only for n=0:2 and 1.0 for clarity.

expression (12a) indicates that the horizontal velocity components are given by

U (y; t) =−
(

n
n+ 1

)
p;x(x; t)|∇p(x; t)|(1−n)=n (31a)

V (y; t) =−
(

n
n+ 1

)
p;y(x; t)|∇p(x; t)|(1−n)=n (31b)

Expressions (31) illustrate the interplay between shear thinning and the �ow rate, which
is implicitly related to the pressure gradient. The relation between the Newtonian and non-
Newtonian velocities can be roughly written as (U;V )non-Newt = 2(n=n+1)|∇p|(1−n)=n(U;V )Newt.
Thus, shear-thinning �ow is stronger than a Newtonian �ow if the product 2(n=n+1)|∇p|(1−n)=n)
¿1, or if the pressure gradient is strong enough to counterbalance the decrease in the term
n=(n + 1) as n decreases from 1. Note that, for shear-thinning �uids, this term is less than
one.
Figure 12 shows the in�uence of shear thinning on the evolution of the front for a �ow rate

corresponding to a=1, for n=1:0, 0.6 and 0.2. The �ow in the �gure should be compared
to that of Figure 8 where the �ow rate is twice as strong (a=2). Contrary to Figure 8,
Figure 12 indicates that the �ow of a shear-thinning �uid is slower than that of a Newtonian
�uid. Figure 12 also shows that the acceleration is much smaller in this case. This is con�rmed
upon examination of Xmax(t), which is shown in Figure 13 for n∈ [0:2; 1:0]. There is a strong
tendency for the tip position to evolve linearly with time, especially for the more shear-thinning
�uids. It is important to observe from the �gure that, unlike the case a=2 (Figure 9), the e�ect
of shear thinning is gradual (linear) on the �ow. The overall weakening of the �ow with shear
thinning is illustrated in Figure 14 for n=0:2, 0.4 and 1.0. There is considerable weakening
of both horizontal velocity components with shear thinning (compare with Figure 11). In
particular, the �uid corresponding to n=0:2 remains essentially stationary, similarly to what
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Figure 12. In�uence of shear thinning on transient �ow inside a �at plate of constant thickness (a=1).
The fronts are shown at equal time intervals over a period of 5 time units, for n=0:2, 0.6 and 1.0.

Figure 13. In�uence of shear thinning on the evolution of the front tip position, Xmax(t), with time for
the �ow inside a �at plate of constant thickness for n∈ [0:2; 1:0] and a=1.

Figure 12 seems to suggest. This observation is important from a practical standpoint, as
it suggests that shear thinning can be considerably inhibiting to �uid movement in a given
process such as injection molding.
Finally, the results in Figures 9, 10, and 13 hint at the existence of a �ow rate at which

shear thinning may not have any in�uence on the �ow. Indeed, Figure 15 shows the evolution
of Xmax and Xc for n=0:2 and 0.8, for a �ow rate corresponding to a=1:5. The �gure clearly
re�ects the insigni�cance of the in�uence of n on the �ow, comparatively to a �ow at higher
�ow rate, a=2 (Figures 9 and 10), and a �ow at lower rate, a=1 (Figure 13). It is interesting
to note from Figure 15 that shear thinning appears to enhance slightly the movement of the
tip of the front, and appears to retard slightly the movement of the contact point.
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Figure 14. Phase plot of the axial and lateral velocity components, U (y; t)
and V (y; t), at the front for 0¡t¡5, for the �ow in Figure 12 (a=1). The

plots are shown only for n=0:2, 0.4 and 1.0 for clarity.

Figure 15. In�uence of shear thinning on the evolution of the front tip position,
Xmax(t), and that of the contact point position, Xc(t), with time for the �ow inside a

�at plate of constant thickness for n∈ [0:2; 1:0] and a=1:5.

4.3. In�uence of cavity thickness

So far, all reported results have been restricted to a cavity of constant thickness, h(x)=1.
In this section, the in�uence of cavity thickness is examined for the �ow of shear-thinning
�uids. Similarly to the interplay between shear thinning and �ow rate, it is expected that an
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Figure 16. In�uence of cavity surface inclination on the evolution of the front tip position, Xmax(t), for
n=0:2 and a=2. Here � is the angle of inclination (in degrees).

interplay can exist with cavity thickness. However, the in�uence of cavity thickness may be
more intricate given its local character, as opposed to the global in�uence of the �ow rate at
the entrance. Three types of thickness distributions will be investigated, a linearly diverging,
linearly converging and wavy cavity. Only variation along the x direction will be examined.
Consider �rst the �ow inside a cavity of thickness h(x)= tan(�)x+1, where � is the angle

of inclination of the cavity walls. The in�uence of � on the �ow is illustrated in Figure 16 for
three values: �= + 5, 0 and −5◦, corresponding to a diverging, �at and converging cavity,
respectively. The �ow rate is the same for the three con�gurations, corresponding to a=2,
and n=0:2. As expected, the �gure shows that the �ow is weakened by cavity expansion
(�= + 5◦). More explicitly, Figure 17 gives the relative strength of the lateral �ow. The
�gure indicates, in particular, that the di�erence in �ow strength between the middle (y=0)
and the lateral walls (y=± 1) tends to increase for with cavity expansion.
Finally, consider the �ow inside a cavity with wavy walls. In this case, the thickness is taken

as h(x)=1 + A sin(!x), where A is the amplitude and ! is frequency. Figure 18 shows the
in�uence of A∈ [0; 0:8] on the evolution of the front tip position, Xmax(t), for a shear-thinning
�uid (n=0:2), !=4 and a=2. Case A=0 corresponds to a cavity of constant thickness, and
is included here for references. The �gure shows that as A is increased from zero, the �ow
behaves in an oscillatory manner with time. There does not seem to be a �xed frequency in
the �ow response, but the �ow appears to �uctuate mostly in the initial stage. Initially, the
period of �ow is roughly equal to 1.5 time unit, corresponding to a �ow frequency equal to
4.2. Thus, the �ow responds with the same time frequency as the imposed space frequency
of the wall. This is expected, since the mean velocity at the channel exit is equal to one. It
is interesting to observe that the frequency of the �ow is not a�ected by the amplitude A.
The e�ect of wall frequency is further assessed in Figure 19, which shows the in�uence of
!∈ [0; 4] on Xmax(t) for a shear-thinning �uid (n=0:2), A=0:8 and a=2. Generally, the front
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Figure 17. Phase plot of the axial and lateral velocity components, U (y; t) and V (y; t),
at the front for 0¡t¡5, for the �ows corresponding to Figure 15. Note that only the

initial orbit is shown for the Newtonian case.

Figure 18. In�uence of thickness amplitude, A, on the evolution of the front tip position, Xmax(t), for
wavy cavity wall, !=4, n=0:2 and a=2.

tip moves at the same average rate as for a �ow between �at walls. However, there is a sharp
drop in rate as ! is increased from zero to 1, and a gradual regain in the value of Xmax(t)
as ! increases further. The response amplitude of the �ow is a�ected by !. For low !, the
amplitude is relatively large. Figure 20 shows in�uence of shear thinning, n∈ [0:2; 1:0], on
the �ow response for A=0:8, !=4, and a=2. The results in the �gure should be compared
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Figure 19. In�uence of thickness frequency, !, on the evolution of the front tip position, Xmax(t),
for wavy cavity wall, A=0:8, n=0:2 and a=2.

Figure 20. In�uence of shear thinning on the evolution of the front tip position, Xmax(t),
for wavy cavity wall, A=0:8, !=4 and a=2.

to those reported in Figure 9. Similarly to a �at cavity, the �ow in the present case is also
little in�uenced by shear thinning for n¿0:2. The important observation to be made from
Figure 20 is that the response frequency is independent of shear thinning for n¿0:2. As n is
decreased to 0.2, the response frequency roughly doubles.
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5. DISCUSSION AND CONCLUSION

A number of assumptions were made in this work, which need to be relaxed if a more realis-
tic model is sought to simulate the �lling stage during injection molding. These assumptions
include �uid incompressibility, inelasticity, absence of inertia and surface tension, isothermal
laminar �ow, small gap width compared with other dimensions, rapid variation of mold shape
(large local radius of curvature), and no slippage at the mold walls. The absence of sur-
face tension and �uid elasticity can be particularly limiting. Although polymeric �uids have
typically low surface tension coe�cient, there may be instances where surface tension e�ect
becomes important, such as in the presence of strong local curvature of the front in the (x; y)
plane. The presence of insert, for instance, can lead to signi�cant curvature in the melt front
as the �uid wraps itself around the insert. Surface tension e�ect is also important at the con-
tact between front and mold wall. It is, however, well established that polymeric �uids have
a low surface-tension coe�cient (small capillary number), and unless the �ow is very slow,
surface-tension e�ect is not expected to play a signi�cant role in injection molding.
The e�ect of �uid elasticity is another important aspect that needs eventually to be in-

corporated. Elastic e�ect becomes clearly non-negligible in �ow regions where normal-stress
or elongation e�ect is strong. Since the �ow is expected, typically, to be reasonably fully
developed in most of the �ow regions behind the front, then elasticity is relatively weak in
those regions, particularly as far as the �ow kinematics is concerned. A rough estimate of the
�ow elongation in the front region for a shear-thinning �uid indicates elongation increases
in strength for �uids that are highly shear thinning, �owing at a higher injection rate, in
a mold of smaller gap width [22]. Elastic e�ect can also be important in the �nal stages
of �lling. Elasticity should then be considered when estimating stress buildup and residual
stresses. This estimation is of course relevant to the prediction of warpage and shrinkage of
the molded part. In addition to elongation, shearing can also enhance elastic e�ect in the
�ow, in the form of shear-rate dependence of the relaxation time(s), for instance. However,
shearing is expected to be almost negligible, particularly in the immediate vicinity of the mold
walls and in the central region, but may exhibit some strength further away from the walls.
In this regard, the adoption of an appropriate constitutive model that can accommodate both
shear and elongation e�ects becomes a crucial and di�cult issue to deal with if elastic e�ects
are included. Comparison between theory and experiment shows that �ow simulation based
on inelastic �uids can be realistic. This has even been established based on earlier studies
on injection molding. Huang [23] has used the marker-and-cell approach to investigate the
melt front �ow. Assuming isothermal Newtonian and power-law �uid behaviour, he obtained
fountain-�ow patterns. His results are in good agreement with the experimental observations
of Schmidt [24].
In conclusion, the general lubrication or shallow-water formulation is revisited for transient

free-surface �ow inside a three-dimensional cavity of variable thickness. The �uid is assumed
to be shear thinning of the power-law type. A semi-analytical approach is used to solve the
moving-boundary problem. Inertia is neglected, and a modi�ed pressure, S, is introduced,
which is governed by the Laplace’s equation. The irregular and time-dependent domain in the
(x; y) plane is mapped onto the �xed rectangular domain (�; �)∈ [0; 1]× [−1; 1]. The trans-
formed (modi�ed) pressure equation is solved by expanding S in Fourier series along the �
direction. A similar expansion is used to represent the shape of the front. The Galerkin pro-
jection method is used to obtain the equations that govern the expansion coe�cients using a
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multiple-step �nite-di�erence method. Convergence and accuracy of the method are assessed
by varying the level of truncation in the Fourier expansion. It is found that, even for the most
non-linear case (n=0:2), only a remarkably small number of modes are usually needed to
reach convergence. This observation is consistent for the free-surface pro�les, the advance-
ment of front tip and contact point, and the distribution of the velocity components along the
front.
The in�uence of shear thinning, and the cavity topography is examined in some detail. In

all cases reported, the driving pressure gradient is parabolic with respect to the transverse
direction, y, and is maintained �xed at the cavity entrance (x=0). The initial domain is also
assumed to have a parabolic front. There is a strong lateral �ow initially. This �ow, however,
diminishes in intensity, leading to the straightening of the front with time. At high �ow
rate, shear thinning is found to enhance �ow movement. When the �ow rate is relatively low,
shear thinning appears to prohibit the �ow. Hence, there is a critical �ow rate for which (even
the strongest) shear-thinning e�ect (n=0:2) does not alter the Newtonian �ow. Variation in
cavity topography indicates that a spatial modulation of the cavity surface(s) leads to temporal
modulation of the �ow. Shear thinning appears to enhance modulation.
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